
EEN 521 Project 2: Stack Over-Run Vulnerability
Exploitation

Connor McCullough

 The object of this project was to overrun a locally declared array with input
characters, overwriting the return address to set the program counter to another section
of code. The format of a typical stack frame is shown here:

 The above stack configurations come from the debug points in the code snippet. The
structure in fig. 1 can be seen in the two configurations of the stack above. FP is the
stack pointer, where FP+1 is the return address, FP+2 is a parameter. FP+5 to FP+14
represents the buffer of characters which is read during the gets function and passed
back to “start”. It can be seen that if enough characters are read in “gets”, the buffer will
overflow and characters will be written to the previous frame pointer and the function
return address. By specifically altering the function return address, the return address
can be set elsewhere and code can be read.

	 	

1) Accessing Code in a Function Without Calling

 By properly overwriting the return address, any function in the code can be accessed
without explicitly calling the function in code. The “hax” function is declared written but
never explicitly called in the code:

 The address for the added function in the code was acquired by temporarily calling
the “hax” function, putting a debug point, and copying the address of the program
counter immediately before the “out” function is called. A text file made up of random
characters and the address copied from the frame pointer was then concatenated:

 Here, the 1’s fill the buffer and “^G^D” is ASCII code for the hex value 0407, which
was found by creating a small program which typecasts the hex value as a char data
type. There are just enough 1’s that the address for the function will be written into the
return address. When this value is overwritten into the return call, the instructions from
the function are implemented without the function being explicitly called:

	

2) Including Executable File in Input File

 The above process can be modified to instead modify the return address to point to
another block of machine code located in the input text file and execute those
instructions. The input text file in this case is a concatenation of three files: the txt file of
1’s to fill the buffer, the address to the rest of the code to execute, and the characters for
the machine code which will be executed once the program counter is changed. Below
is a snippet from the end of the text file:

Below is the assembly program that is hidden in the input txt file before it is compiled into
machine code:
 load R0,68
 load R1,69
 load R2,6969
 break R0,1

 .MAKEEXE

The following commands are typed into Unix after the assembly code is written:

assemble hack
a.out > hack.txt
cat ones.txt hack.txt pcaddress.txt > allstuff8.txt

 This assembles the program, and streams the executable file into a text file, where it
is converted into ASCII characters. The 1’s file, machine code, and program counter

address are then combined into one text file.

Above are two more configurations of the stack. The leftmost is when the text file is not
quite full of enough 1’s to fill the entire buffer. The return address to be used is partway
between FP+247 and FP+248, the machine code is at FP+243+247, and the 1’s filling
the buffer are in the addresses below that. The return address that must be overwritten
is located at FP+262. In the right configuration, when more 1’s have been added, the
address to the start of the code has replaced the return address. It can be seen that the
return address in FP+262, which was once pointing to the return address of the calling
function, now points to the values directly below which contain the hidden program.

 The results of the program running are seen above. Registers R1 and R2 have been
overwritten, while R0 retains its previous value because the program counter was
actually pointed to one line above the start of the machine code. This was done to show
that each assembly instruction corresponds exactly to one word on the stack. It can also
be seen that the PC counter has been moved to 0x7FFFFFF6, the address of the break,
meaning it successfully moved to the start of the assembly code and executed every
instruction up until the break. To make sure the break instruction was indeed due to the
text file and not the debug statements, these statements were removed from the original
program and the program would still break at the same point.

	 	

Conclusion:
 This project taught how data is stored on the stack in relation to function calls, as well
as how the frame pointer and program counter work. This will be important in future
projects as running programs and storing/reading of files will require manually setting
pointers to the appropriate memory locations. The project also taught that if appropriate
safeguards are not in your operating system, memory can be easily overwritten.

