Character Recognition Applied to Persian Characters Using Decision Tree
Connor A. McCullough, Student, University of Miami
Abstract—Binary Image Processing, while the most basic form of image processing, has several relevant applications including text recognition. This project covers the process of creating a practical textprocessing algorithm, taking into account the classifying of letters, splitting of letters into multiple images for classifying, and pre-processing for noise reduction. The use of a decision tree to classify characters reduces computations greatly, but sacrifices the ability to recognize characters outside of the given set.
Keywords—binary image processing; classification; decision tree;
I. Introduction

 Character recognition has a vast number of uses and is a very important field in image processing. Due to the nature of printed text, character recognition can be done using binary images, meaning images which are purely black or white with no intermediate intensities.

 The project was completed in three phases. First, an image classifying function was created which can determine a character from an image of a single character with no added noise. This function consisted of two phases: feature extraction, followed by a decision tree algorithm to choose the proper image based on different features. Next, a function was created to properly split an image with many characters split into multiple images of one character each. This function first creates boundaries based on the minimum and maximum points of an object, then determines if neighboring objects are also part of the character. The image classifying function is then called on each of the smaller images. The last stage was pre-processing of images so that the algorithm can function even under noisy circumstances. All preprocessing occurs before image splitting.

II. Image Processing
A. Classified Algorithm
The idea of designing the character classifier for this project was for the criteria for choosing an image to be as high level as possible, that is, the features that humans would naturally use to distinguish characters when viewing them. The top branch consists of the number of objects, or discrete portions of neighboring logic ‘1’ pixels. The second branch consists of the Euler number, or the difference between the number of objects and number of holes in the objects of the character.

 All the branches below the first were much more character-specific. Run length plays a major part in distinguishing the characteristics of a letter. This was done by creating arrays for each row and column with the number of times the pixels alternated between ‘1’ and ‘0’ for each row and column. The vertical and horizontal run length give substantial information as to the features of a character. Run length was used as the final branch to distinguish between two letters in almost every single letter.

 Determining center of mass for both objects and holes is also important for distinguishing for letters. By visual inspection, it can be seen that the major difference between the letters “veh”, “Ta”, and “Saad” is the relative location of the holes in the letters. In order to extract this information, a center of mass function and a quadrant identifying function were written. The center of mass function finds the coordinates of every pixel for a given objects, and averages them into a single x and y coordinate. The function works both for center of mass for objects and holes, although processing is slightly different. For holes, the image is inverted so the area inside and outside of objects is treated as part of the image, instead of the objects. However, the first set of coordinates must be eliminated as it represents the large area outside of all the objects, and not the holes.
 Center of mass played an import part in classification for many other letters as well. By inspection, the major differences between ‘zal’ and ‘Khe’ are that the openings of the letters are facing different directions. This was calculated by finding which side the center of mass of the object was relative to the overall center point of the image of the character. For several other characters, the position of the dot of a character relative to the full image plays an import part in distinguishing the characters at a high level. This was important both on the x and y planes and was accomplished by seeing what quadrant or third of the image the center of mass coordinates fell in.

B. Splitting Images
The next phase of the project was to split images with multiple characters into a group of images to be processed by the character classifying algorithm. This phase also requires some data extraction before processing, in order to determine the number of objects in each letter, as well as center of mass once again. Next, a for loop processes each object into its own image. The algorithm was first written for the most basic character and gradually expanded to encompass exceptions. First, all indeces of the object being processed are found and the four boundary coordinates were found to create a window for the character. This window was made slightly bigger than the character so that there is a white border around it. However, expanding the boundaries means making sure that the boundaries of the character do not exceed the overall bounds of the composite image. By applying this window to the chosen object, a single character with a single object can be extracted from a composite image and put in its own image.

 However, splitting characters with multiple objects proved much more difficult. After the initial window is created for a single character, the function checks if there are any other objects that are within the horizontal boundaries and a suitably small distance away from the center of mass of the original object. If this criteria Is satisfied, then the object is added to an area of objects to include in the character. When all objects have been added to the character list, the window for the character has to be calculated again, this time to include all the objects in the character. One final issue is that once an object has been included in one character, it cannot be part of any other character in the image. Special care has to be taken that objects cannot be used in multiple characters.
C. Noise Elimination

Upon inspecting noisy images which have been converted to binary images, the biggest problem and easiest to address issue is with small holes appearing within objects. This will have an effect on the Euler number of the character, which will change the results. Compensation for this problem is added to the preprocessing before the image is split. This is done by inverting the binary image, detecting the number of holes, and setting all holes with a small enough area to logic ‘0’, and inverting back to the original image. While thickening and thinning is also an accepted method for noise elimination, it did not address the issue of these small holes in objects, while this function did.
III. Testing and Analysis of results
 Testing was initially performed solely on the images of singular characters without noise. Recognition in these circumstances proved 100% successful for all characters. However, the accuracy of the algorithm began diminishing when characters outside of the set were introduced. For the first test composite image, all characters within the set were properly identified. None of the images outside of the set were properly identified as being outside of the set though, and were instead falsely labeled as other images within the set. This is due to the nature of the decision tree sorting algorithm, which attempts to minimize the number of properties being used to classify data to only the most important. Because only a few number of properties are being used, it is easy for an outside character to have the same properties as a character in the set and falsely trigger a classification. Using this algorithm, it is impossible to eliminate the possibility of falsely triggered letters that are not in the set. The only solution to this problem would be to use a different algorithm which would be based on feature extraction for each character and finding the closest match. However, this would require completely redoing the whole algorithm.

 While this is a downside of the chosen algorithm, there are several positive aspects. The use of only the most important properties makes the algorithm highly streamlined, making it ideal for real-time embedded DSP application. While the algorithm is not good for identifying letters outside of the given set as not in the set, this problem could be worked around by increasing the size of the set. Use of a decision tree algorithm for character classification could be a way to implement a “light” version of an image detection algorithm for circumstances with low available processing power.

The results for noisy signals were mixed. For slightly noisy signals, the algorithm continued functioning the same as without noise. This can be attributed to the noise reduction, which eliminates holes created by excess noise. However, with a moderate amount of noise, the classification quality starts to suffer. This is due to crevices in the letters which start appearing at high levels of noise and will affect the run length. This issue could be fixed by not counting an alternation between 1 and 0 if there is not a large enough number of pixels in between changes.

 One final problem occurred in one of the test images while splitting the images. The issue was objects being in the character that while fulfilling the criteria to be included, were not part of the character. The only way around this problem would be a complete redesign of the splitting algorithm. Characters could be fully classified before splitting, but this may compromise the accuracy of classification compared to classifying a previously split letter.
IV. Conclusion
While the character recognition algorithm performed well under ideal circumstances, the introduction of noise and characters outside of the set proved problematic. The issues with the program were not small ones that could be fixed easily, but ones that were fundamental flaws in the design process. Instead of designing for ideal circumstances and gradually adapting to exceptions, the program needs to be designed for the worst-case scenario from the ground up. This means making the algorithm based on the fact that there will always be noise and non-included characters in the selected data. Changes that could be made in the future include better compensation for noise which takes into account the effect of noise on run length, more intelligent splitting of images to account for fringe cases, and more preparation for characters which are not in the image set.

The biggest contribution of this project has been proposing a relativly lightweight and efficient method for classifying letters. With some tweaking to increase accuracy, this algorithm could be ideal for use in circumstances requiring less memory use and processing time.

